Trigonometry DLA Series

Central Angle \& Arc Length

In this DLA, we are are going to look at sector, central angle and arc length..

Sector is the portion of a circle when two radii of the circle meet at both ends of the portion of the circumference of the circle.

Central Angle is labeled by θ and the arc length is labeled with s for the sector of the circle with radius r.

The chart below shows the Area of Sector and the Arc Length.

Type	Formula
Area of Sector	$A=\frac{1}{2} \cdot r^{2} \cdot \theta$
Arc Length	$s=r \cdot \theta$

Where the Central Angle θ must be measured in Radians where

$$
1^{\circ}=\frac{\pi}{180} \text { radian and } \frac{180^{\circ}}{\pi}=1 \text { radian }
$$

Example:

Convert 30° to radian.
Solution:

$$
\begin{aligned}
30^{\circ} & =30 \cdot 1^{\circ} \\
& =30 \cdot \frac{\pi}{180}=\frac{\pi}{6}
\end{aligned}
$$

Example:
Convert $\frac{\pi}{2}$ radians to degrees.
Solution:

$$
\begin{aligned}
\frac{\pi}{2} \text { radians } & =\frac{\pi}{2} \cdot 1 \text { radian } \\
& =\frac{\pi}{2} \cdot \frac{180}{\pi}=90^{\circ}
\end{aligned}
$$

Example:

Find the area of a sector and arc length for the sector with central angle 45° and radius of 6 cm .

Solution:

We first need to convert the central angle to radian.

$$
\begin{aligned}
45^{\circ} & =45 \cdot 1^{\circ} \\
& =45 \cdot \frac{\pi}{180}=\frac{\pi}{4}
\end{aligned}
$$

Solution(continued):

Using the formula for the area of sector.

$$
\begin{aligned}
A & =\frac{1}{2} \cdot r^{2} \cdot \theta \\
& =\frac{1}{2} \cdot \sigma^{2} \cdot \frac{\pi}{4}=\frac{9 \pi}{2} \mathrm{~cm}^{2}
\end{aligned}
$$

Using the formula for the arc length.

$$
\begin{aligned}
s & =r \cdot \theta \\
& =6 \cdot \frac{\pi}{4}=\frac{3 \pi}{2} \mathrm{~cm}
\end{aligned}
$$

Example:

Find the area of a sector with arc length for the sector of 10 cm and radius of 6 cm .

Solution:

Using the formula for the area,

$$
\begin{aligned}
A & =\frac{1}{2} \cdot r^{2} \cdot \theta \\
& =\frac{1}{2} \cdot r \cdot r \cdot \theta \\
& =\frac{1}{2} \cdot r \cdot s \\
& =\frac{1}{2} \cdot 6 \cdot 10 \\
& =30 \mathrm{~cm}^{2}
\end{aligned}
$$

Start at ELAC, Go Anywhere

